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Frank Cowell: Microeconomics 
Solution to Exercise 2.6 

 
 
The exercise discusses the CES (constant elasticity of substitution) production function.  
The solution contains a couple of erroneous, or at least misleading, statements. 
 In the exercise, the production function is given by 

(1) ( )
1

1 1 2 2z zβ β βϕ α α = + z , 

where iz  is the quantity of input i and 0iα ≥ , 1β−∞ < ≤  are parameters. 
 The right-hand side of (1) is not defined for 0β = .  The expression makes sense 
for ( ) ( ],0 0,1β ∈ −∞ ∪ . 
 Below, 0iα >  and 0iz >  will be assumed.  If 0iα =  is permitted, this case must 
be singled out and discussed separately in some of the arguments below, complicating the 
exposition without contributing to improved understanding.  The same holds for 0iz = .  
The possibility 0iz <  can be ruled out by general assumptions made in the textbook. 

 The elasticity of substitution is computed and found to be 1
1
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follows lim 0
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= , 
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=  and 
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β
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= ∞ .  This justifies the claim that these limiting 

cases correspond to the Leontief, the Cobb-Douglas and the linear production functions, 
respectively. 
 It appears, however, that the solution makes stronger statements, by specifying the 
value of ( )limϕ z  in each of the three cases.  The following seems to be claimed: 
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Of these statements, only (4) is true for all admissible values of iα .  The cases (2) and (3) 
are discussed below. 
 
Leontief 
 
Here 0β <  can be assumed.  Moreover, let 1 2z z≤ .  Expression (1) can be rewritten 
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Under the stated assumptions, 2
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Since 1 0
β
< , this gives 
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For all 0K > , 
1

lim 1K β

β→−∞
= .  In particular, [ ]
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=z .  The conclusion is 
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In other words, (2) holds if and only if 1 2 1α α= = . 
 
Cobb-Douglas 
 
The right-hand side of (1) is homogeneous of degree 1 in z, regardless of the values of the 
parameters.  The right-hand side of (3) is homogeneous of degree 1 2α α+  in z.  Hence (3) 
can only hold when 1 2 1α α+ = . 
 Taking the natural logarithm of both sides in (1) gives 
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For all 0K > , 
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 + = +  .  Now assume 1 2 1α α+ = .  

Then the right-hand side of (7) is a 0
0

-expression as β  tends to 0, and ( ){ }
0

lim ln
β

ϕ
→
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can be found by l'Hôpital's rule, that is, by differentiating the numerator and denominator 
of the right-hand side of (7) with respect to β .  The derivative of the numerator in (7) is 
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which tends to 1 1 2 2ln lnz zα α⋅ + ⋅  as β  tends to 0.  The derivative of the denominator in 

(7) is 1.  Hence ( ){ } 1 1 2 20
lim ln ln lnz z
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ϕ α α
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  = ⋅ + ⋅ z , from which (3) follows. 

 That is, (3) holds if and only if 1 2 1α α+ = . 
 The following statements, which contradict (3), can be deduced from (7): 
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