Frank Cowell: Microeconomics Solution to Exercise 2.6

The exercise discusses the CES (constant elasticity of substitution) production function. The solution contains a couple of erroneous, or at least misleading, statements.

In the exercise, the production function is given by

$$
\begin{equation*}
\varphi(\mathbf{z})=\left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]^{\frac{1}{\beta}}, \tag{1}
\end{equation*}
$$

where z_{i} is the quantity of input i and $\alpha_{i} \geq 0,-\infty<\beta \leq 1$ are parameters.
The right-hand side of (1) is not defined for $\beta=0$. The expression makes sense for $\beta \in(-\infty, 0) \cup(0,1]$.

Below, $\alpha_{i}>0$ and $z_{i}>0$ will be assumed. If $\alpha_{i}=0$ is permitted, this case must be singled out and discussed separately in some of the arguments below, complicating the exposition without contributing to improved understanding. The same holds for $z_{i}=0$. The possibility $z_{i}<0$ can be ruled out by general assumptions made in the textbook.

The elasticity of substitution is computed and found to be $\sigma=\frac{1}{1-\beta}$, from which follows $\lim _{\beta \rightarrow-\infty} \sigma=0, \lim _{\beta \rightarrow 0} \sigma=1$ and $\lim _{\beta \rightarrow 1} \sigma=\infty$. This justifies the claim that these limiting cases correspond to the Leontief, the Cobb-Douglas and the linear production functions, respectively.

It appears, however, that the solution makes stronger statements, by specifying the value of $\lim \varphi(\mathbf{z})$ in each of the three cases. The following seems to be claimed:

$$
\begin{align*}
& \lim _{\beta \rightarrow-\infty} \varphi(\mathbf{z})=\min \left\{\alpha_{1} z_{1}, \alpha_{2} z_{2}\right\} \tag{2}\\
& \lim _{\beta \rightarrow 0} \varphi(\mathbf{z})=z_{1}{ }^{\alpha_{1}} z_{2}{ }^{\alpha_{2}} \tag{3}\\
& \lim _{\beta \rightarrow 1} \varphi(\mathbf{z})=\alpha_{1} z_{1}+\alpha_{2} z_{2} \tag{4}
\end{align*}
$$

Of these statements, only (4) is true for all admissible values of α_{i}. The cases (2) and (3) are discussed below.

Leontief

Here $\beta<0$ can be assumed. Moreover, let $z_{1} \leq z_{2}$. Expression (1) can be rewritten

$$
\begin{equation*}
\varphi(\mathbf{z})=\left[z_{1}^{\beta}\left\{\alpha_{1}+\alpha_{2}\left(\frac{z_{2}}{z_{1}}\right)^{\beta}\right\}\right]^{\frac{1}{\beta}}=z_{1} \cdot\left[\alpha_{1}+\alpha_{2}\left(\frac{z_{2}}{z_{1}}\right)^{\beta}\right]^{\frac{1}{\beta}} \tag{5}
\end{equation*}
$$

Under the stated assumptions, $0<\left(\frac{z_{2}}{z_{1}}\right)^{\beta} \leq 1$, implying $\alpha_{1}<\alpha_{1}+\alpha_{2}\left(\frac{z_{2}}{z_{1}}\right)^{\beta} \leq \alpha_{1}+\alpha_{2}$. Since $\frac{1}{\beta}<0$, this gives

$$
\begin{equation*}
\alpha_{1}^{\frac{1}{\beta}}>\left[\alpha_{1}+\alpha_{2}\left(\frac{z_{2}}{z_{1}}\right)^{\beta}\right]^{\frac{1}{\beta}} \geq\left[\alpha_{1}+\alpha_{2}\right]^{\frac{1}{\beta}} \tag{6}
\end{equation*}
$$

For all $K>0, \lim _{\beta \rightarrow-\infty} K^{\frac{1}{\beta}}=1$. In particular, $\lim _{\beta \rightarrow-\infty} \alpha_{1}^{\frac{1}{\beta}}=\lim _{\beta \rightarrow-\infty}\left[\alpha_{1}+\alpha_{2}\right]^{\frac{1}{\beta}}=1$. Then (5) and (6) imply $\lim _{\beta \rightarrow-\infty} \varphi(\mathbf{z})=z_{1}$. Similarly, if $z_{1} \geq z_{2}$. then $\lim _{\beta \rightarrow-\infty} \varphi(\mathbf{z})=z_{2}$. The conclusion is

$$
\lim _{\beta \rightarrow-\infty} \varphi(\mathbf{z})=\min \left\{z_{1}, z_{2}\right\} .
$$

In other words, (2) holds if and only if $\alpha_{1}=\alpha_{2}=1$.

Cobb-Douglas

The right-hand side of (1) is homogeneous of degree 1 in \mathbf{z}, regardless of the values of the parameters. The right-hand side of (3) is homogeneous of degree $\alpha_{1}+\alpha_{2}$ in \mathbf{z}. Hence (3) can only hold when $\alpha_{1}+\alpha_{2}=1$.

Taking the natural logarithm of both sides in (1) gives

$$
\begin{equation*}
\ln \{\varphi(\mathbf{z})\}=\frac{\ln \left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]}{\beta} \tag{7}
\end{equation*}
$$

For all $K>0, \lim _{\beta \rightarrow 0} K^{\beta}=1$. Hence $\lim _{\beta \rightarrow 0}\left[\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}\right]=\alpha_{1}+\alpha_{2}$. Now assume $\alpha_{1}+\alpha_{2}=1$. Then the right-hand side of (7) is a $\frac{0}{0}$-expression as β tends to 0 , and $\lim _{\beta \rightarrow 0}[\ln \{\varphi(\mathbf{z})\}]$ can be found by l'Hôpital's rule, that is, by differentiating the numerator and denominator of the right-hand side of (7) with respect to β. The derivative of the numerator in (7) is

$$
\frac{\left(\alpha_{1} \cdot \ln z_{1} \cdot z_{1}^{\beta}+\alpha_{2} \cdot \ln z_{2} \cdot z_{2}^{\beta}\right)}{\alpha_{1} z_{1}^{\beta}+\alpha_{2} z_{2}^{\beta}}
$$

which tends to $\alpha_{1} \cdot \ln z_{1}+\alpha_{2} \cdot \ln z_{2}$ as β tends to 0 . The derivative of the denominator in (7) is 1. Hence $\lim _{\beta \rightarrow 0}[\ln \{\varphi(\mathbf{z})\}]=\alpha_{1} \cdot \ln z_{1}+\alpha_{2} \cdot \ln z_{2}$, from which (3) follows.

That is, (3) holds if and only if $\alpha_{1}+\alpha_{2}=1$.
The following statements, which contradict (3), can be deduced from (7):

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}<1 \Rightarrow \lim _{\beta \rightarrow 0}[\ln \{\varphi(\mathbf{z})\}]=-\infty \Rightarrow \lim _{\beta \rightarrow 0} \varphi(\mathbf{z})=0 \\
& \alpha_{1}+\alpha_{2}>1 \Rightarrow \lim _{\beta \rightarrow 0}[\ln \{\varphi(\mathbf{z})\}]=\infty \Rightarrow \lim _{\beta \rightarrow 0} \varphi(\mathbf{z})=\infty
\end{aligned}
$$

